Discriminantanalyse (DA)
- Gepubliceerd in Psychologie
- Reageer als eerste!
Je wilt op grond van een aantal intervalvariabelen (p≥2) voorspellen tot welke groep uit een set van k groepen iemand behoort. Je kunt onderscheid maken door te kijken vanuit de groepen (descriptieve DA) of vanuit de individuen binnen die groepen (predictieve DA).
Bij het doen van DA moet je jezelf afvragen of je voorspelling zin heeft. Da leidt altijd tot een optimale voorspelling van de nominale variabele vanuit de intervalvariabelen. Een voorspelling stelt iets voor als deze beter is dan wat je op basis van toeval mag verwachten. Dit kun je berekenen met behulp van Wilk’s lambda. Hierbij geldt H0: de groepen verschillen op geen enkele manier op de intervalvariabelen. Wanneer Wilk’s lambda niet significant is, kun je niets voorspellen. Wanneer deze wel significant is, kun je een voorspelling doen die beter is dan je toevalsverwachting. Het is geen garantie voor een goede voorspelling of voor een sterke samenhang tussen de groepsindeling en de intervalvariabelen.
Voor predictieve DA hoef je eigenlijk niet te weten hoe de groepen van elkaar verschillen. Toch wil je vaak graag weten hoe en waarom een voorspelling werkt. Dit kun je bekijken met behulp van de descriptieve DA (komt bij de cursus MVDA aan bod).
Wanneer je een p-dimensionale ruimte hebt waarin je de scores van de verschillende proefpersonen aftekent, die je vervolgens verbindt met de verschillende groepen, kun je achterhalen bij welke groep welke proefpersoon hoort. Dit is namelijk de groep waar de proefpersoon het dichtst bij in de buurt staat. Zie ook figuur 3 op pagina 5. Je kunt de afstand berekenen met de stelling van pythagoras:
Bekijk pagina 6 voor een rekenvoorbeeld. De algemene formule is als volgt:
Wanneer de variabelen verschillende standaarddeviaties hebben, moet je de variabelen standaardiseren (omzetten in z-scores). Als variabelen onderling gecorreleerd zijn, moet je werken in de ruimte van de discriminantfunctievariaten. Wanneer de groepen verschillen in spreiding rondom het gemiddelde moet je de groepspunten wegen naar de standaarddeviaties van de groepen (de afstand wordt kleiner bij een hoge standaarddeviatie).